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Abstract—Electrification of transport compounded with cli-
mate change will transform hourly load profiles and their
response to weather. Power system operators and EV charg-
ing stakeholders require such high-resolution load profiles for
their planning studies. However, such profiles accounting whole
transportation sector is lacking. Thus, we present a novel ap-
proach to generating hourly electric load profiles that considers
charging strategies and evolving sensitivity to temperature. The
approach consists of downscaling annual state-scale sectoral
load projections from the multi-sectoral Global Change Analysis
Model (GCAM) into hourly electric load profiles leveraging high
resolution climate and population datasets. Profiles are developed
and evaluated at the Balancing Authority scale, with a 5-year
increment until 2050 over the Western U.S. Interconnect for
multiple decarbonization pathways and climate scenarios. The
datasets are readily available for production cost model analysis.
Our open source approach is transferable to other regions.

I. INTRODUCTION

The transportation sector is a major greenhouse gas (GHG)
emitter, accounting for 29% of United States (U.S.) [1] and
27% of global emissions in 2019 [2]. It is the largest GHG
emitter in the U.S. and second largest globally. While the
focus has primarily been on electrifying light-duty vehicles
(LDVs), the electrification of medium- and heavy-duty vehi-
cles (MHDVs) and non-road vehicles (such as trains, aviation,
and ships) is gaining momentum [3]. Currently, LDVs have
seen significant electrification, with global electric car sales
reaching 16.5 million in 2021, representing 9% of the global
car market [4]. Electric bus and truck penetration is lower at
4% and 0.1% respectively [4]. However, achieving compre-
hensive decarbonization requires electrifying the entire trans-
portation sector, including MHDVs and non-road vehicles.

Rapid large-scale transportation electrification poses chal-
lenges to economics [5], operations [6], and cybersecurity [7]
of power grids and EV chargers. To address these challenges,
accurate and highly granular projections of spatio-temporal
transportation charging load profiles are essential for effective
planning and decision-making. Recent studies [8]–[10] have
employed data-driven approaches to project EV charging load
profiles. For example, Gaete et al. [8] developed LDV charging
profiles in Germany using data on mobility, battery character-
istics, and charging strategies.
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Fig. 1. Energy use of LDVs, MDVs, HDVs, and non-road vehicles in the
western U.S. interconnection for the Business As Usual (BAU) and Net Zero
(NZ) decarbonization pathways in the Global Change Analysis Model.

Borlaug et al. [9] created average daily charging profiles
for depot-based heavy-duty trucks based on truck mobility
and charging data. Wang et al. [10] generated daily charging
profiles for MHDVs in California by considering mobility pat-
terns and future charger capacities. In contrast to these studies
[8]–[10], our approach encompasses the entire transportation
sector, providing comprehensive time-series data for charging
load profiles.

In this paper we analyze transportation electrification in
the western U.S. interconnection region. Our analysis encom-
passes two decarbonization pathways: i) Business As Usual
(BAU) and ii) Net-Zero (NZ), modeled using the U.S. version
of the Global Change Analysis Model (GCAM-USA) as
depicted in Fig. 1. GCAM is a widely utilized, economically-
driven, multi-sector dynamics model that simulates the inter-
actions between human and natural systems, playing a crucial
role in assessing global changes and their impacts. Notably,
GCAM has been employed by organizations like the Intergov-
ernmental Panel on Climate Change (IPCC) [11] and the U.S.
Department of Energy. The BAU scenario in GCAM reflects
existing GHG emission reduction policies. The NZ scenario
embodies ambitious plans to achieve a clean U.S. grid by
2035 and net-zero GHG emissions by 2050. Leveraging these
decarbonization pathways, we generate hourly transportation
electric load profiles across Balancing Authorities (BAs) in the
western U.S. interconnection. BAs oversee resource planning,
electricity supply-demand balance, and real-time frequency
regulation in specific geographic areas. For spatial details on
BAs in the western U.S. interconnection, we refer to [12]. To
this end, we make the following unique contributions:

1) We develop a spatially-distributed statistical downscaling
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approach, leveraging multi-sector dynamics in GCAM, to
project annual transportation energy onto hourly BA-level
time-series profiles in the western U.S. interconnection.

2) We conduct a detailed sensitivity analysis of transporta-
tion charging profiles considering climate change scenar-
ios, decarbonization pathways, and charging strategies.

3) We provide open source code at https://doi.org/10.5281/
zenodo.7888569 [13] to accelerate the dissemination of
the approach and support the community of practice.

II. DATA AND TOOLS

This section outlines the key data and tools employed to
project spatio-temporal transportation charging load profiles.

A. Global Change Analysis Model (GCAM)

The Global Change Analysis Model (GCAM) [14] is an
open-source integrated assessment model that encompasses
energy, economy, agriculture and land use, water, and climate
systems at global spatial scales. For this study GCAM spans
from 2015 to 2100, with 5-year time-steps, and the final cali-
bration year is 2015. We utilize GCAM-USA v6 which focuses
on 50 states plus the District of Columbia and simulates sub-
national economy and energy systems. GCAM-USA v6 incor-
porates socioeconomic drivers, energy transformation trends,
and final energy services at the state level. It utilizes the Shared
Socioeconomic Pathway-2 (SSP2) growth assumptions [15].
GCAM-USA v6 incorporates updated electricity technology
cost assumptions from the National Renewable Energy Lab-
oratory’s (NREL) 2022 Annual Technology Baseline (ATB)
[16]. Transportation cost and energy intensity assumptions,
including those for EVs, are primarily based on NREL’s
Electrification Futures Study [17].

B. Thermodynamic Global Warming Simulations (TGW)

The Thermodynamic Global Warming (TGW) simulations
[18], [19] are based on the Weather Research and Forecasting
(WRF) model [20], [21]. WRF is a widely used numerical
weather prediction model that calculates atmospheric variables
at horizontal and vertical grid cells above the Earth’s surface
[20], [21]. The TGW simulations provide hourly and three-
hourly meteorological data at a 12 km2 resolution, covering
the conterminous U.S. and parts of Canada and Mexico. For
2020-2099, the TGW simulations replay historical weather
events under different levels of global warming based on
multiple Representative Concentration Pathways (RCPs) and
Global Climate Models. Warming levels are derived from
average temperature and humidity changes from models that
are “cooler” and “hotter” compared to the multi-model mean.
We use four future climate scenarios obtained by combining
the cooler and hotter scenarios with RCP 4.5 and RCP 8.5.

C. Total ELectricity Loads Model (TELL)

The Total Electricity Loads (TELL) model [22] downscales
annual state-level electricity demand projections from GCAM-
USA to a hourly resolution. TELL utilizes multilayer per-
ceptron models trained on historical hourly electricity de-
mands and meteorological variations for each BA. The hourly

BA-level loads from TELL are scaled to match the annual
state-level loads from GCAM-USA, providing hourly non-
transportation electricity demands for each BA. Combining
these with transportation charging demands allows for a com-
prehensive analysis of change in total loads over time and
across decarbonization scenarios.

D. EVI-Pro Lite

EVI-Pro Lite [23] is a data-driven tool that projects the
aggregated charging demand of EVs. It uses detailed data
on travel patterns, EV attributes, and charging infrastructure
characteristics to generate charging electric load profiles. The
tool is based on advanced PEV simulations trained on real-
world driving data from large U.S. travel databases. Inputs to
the tool include fleet size, discrete daily mean temperature, EV
distribution, battery size, charging access, charging preferences
(home vs work), and charging levels. We acknowledge that
future technological advancements (e.g., wireless charging),
changes in charging behavior, and broader EV adoption may
challenge EVI-Pro assumptions based on historical data. Thus,
we select parameters to represent realistic future charging
scenarios. We detail our input assumptions and their relation
with GCAM-USA, TGW, and TELL in Section III-A.

E. Fleet DNA Data

The Fleet DNA dataset [24] contains anonymous data on
the mobility of commercial MHDVs in the U.S., including
delivery vans, transit buses, and refuse trucks. We utilize
specific data headings, such as ”Vid” (vehicle identifier),
”start ts” (vehicle record start time), ”end ts” (vehicle record
end time), and ”distance total” (distance traveled by vehicle).
To focus on return-to-base schedules, we exclude mobility
instances that are less likely to be return-to-base. Also, we
filter the data to include only vehicles that return to the depot
by midnight and charge during their dwelling time in depots.

F. Non-Road Vehicles Data

Non-road vehicles data includes enplanements at U.S. com-
mercial airports published by the U.S. Federal Aviation Ad-
ministration [25], route miles of rails, and shipping docks in
U.S. published by the U.S. Department of Transportation [26].

III. METHODOLOGY

Fig. 2 illustrates our methodology for developing spatio-
temporal charging load profiles across BAs in the western U.S.
interconnection. Below, we detail our approach.

A. Developing LDV Charging Load Profiles

Fig. 2 illustrates the generation of LDV charging load
profiles. This section outlines the methodology for translating
the state-level annual energy consumption of electrified LDVs
in GCAM-USA into hourly load shapes at the BA level.

https://doi.org/10.5281/zenodo.7888569
https://doi.org/10.5281/zenodo.7888569
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Fig. 2. Workflow for generating transportation charging load profiles across
BAs in the western U.S. interconnection. Tempr.: Temperature, WRF: Weather
Research and Forecasting Model, TELL: Total ELectricity Loads Model.

Spatial Downscaling: We use county-level resolution data
to spatially downscale LDV charging load profiles. This allows
us to incorporate temperature data from the TGW simulations
(Section II-B) and consider the diverse climatic regions within
the BAs. The state-to-county distribution of energy use is
determined by analyzing the distribution of registered EVs
across counties using vehicle distribution data from 2018-
2021. Each county’s proportion of the state’s total EVs is
calculated, following the methodology outlined in [5].

Temporal Downscaling: The county-level aggregate charg-
ing load profiles require various inputs from different modules.
One crucial input for the EVI-Pro module is the fleet size.
While direct fleet size data is not available from GCAM-
USA, the annual energy consumption (in PJ/yr), energy usage
per vehicle travel distance (in MJ/kvm), and average travel
distance are utilized to estimate the fleet size. Daily mean
temperature from TGW simulations (Section II-B) is used in
EVI-Pro, with mapping to the nearest permissible discrete
values. Additional inputs for EVI-Pro are outlined in Table
I, independent of other modules in this study.

While EVI-Pro [23] does not cover all future charging
scenarios, we outline our key parameter choices in the model.

• Battery EVs have a 250-mile range- the max. battery size
in EVI-Pro. Plug-in hybrid EVs are excluded in this study.

• Predominant use of level-2 chargers (208-240 V) over
level-1 chargers (120 V AC).

• Anticipated decrease in home charging preference from
80% to 60%, influenced by increasing chargers in pub-
lic and work. Also, as EV ownership reaches 75-90%,
chargers in multi-family residential dwellers increases,
reducing home charging preferences. In 2022, ≈ 63% of
houses are single-family units [27], which also bounds
the preference for home charging.

• Study of two charging strategies: min delay for immedi-
ate maximum-speed charging after arrival and load level
for slow charging during the dwelling time. By 2035,
30% of LDVs are expected to use load leveling, which is
projected to increase to 70% by 2050. Managed charging

TABLE I
CHOICE OF INPUT PARAMETER FOR EVI-PRO

PEV BEV250 Class Equal
Preference Home60 Home access HA75, HA100

Home power MostL2 Home ch. strategy min delay, load leveling
Work power MostL2 Work ch. strategy min delay

with price incentives and larger battery capacities reduce
range anxiety, increasing load-leveling adoption.

B. Developing MHDV Charging Load Profiles
Fig. 2 illustrates the two-step process for generating MHDV

charging load profiles.
In Step 1, using the MHDV load shape generator in

Fig.2, we generate separate normalized MHDV charging
load profiles for MDVs and HDVs. Inputs to the generator
include mobility data for MHDVs (delivery vans, delivery
trucks, school buses, transit buses, bucket trucks, tractors, and
refuse trucks) obtained from Fleet DNA (SectionII-E), MHDV
charging strategies, EVCS capacities (kW), unit energy use
(kWh/miles), fleet size, and number of sample fleets [9].
Three charging strategies—immediate, delay, and constant
minimum power—are utilized. Immediate charging begins
upon depot arrival and continues until the battery is fully
recharged or the next trip commences. Delayed charging de-
lays charging to ensure full recharge just before the subsequent
trip. Minimum power charging involves charging at a constant
minimum power level throughout the depot dwelling period
to guarantee a full recharge for the next trip. We incorporate
the uncertainty of future EV charging, considering a mix
of charging strategies and multiple charging capacities, by
assigning weights to both the charging strategies and charger
capacities. The unit energy use (kWh/mi) of vehicles depends
on their weight, which is determined using a survey [28]. To
minimize bias in MHDV profiles, we simulate the MHDV
load shape generator (Fig. 2) for a user-defined fleet size and
number of fleet samples, following the approach in [9]. The
load shape generator in Fig.2 aggregates Fleet DNA mobility
data by month and generates normalized average daily MHDV
charging shapes with a 1-hour resolution for each month.
These daily shapes are extended to create normalized yearly
MHDV charging load profiles. Due to insufficient mobility
data, we assume that the daily MHDV charging shape remains
consistent throughout a month.

In Step 2, we scale the normalized MHDV charging load
shapes by the annual MHDV energy use (in EJ) projected by
GCAM-USA in the western U.S. interconnection for a given
year and decarbonization pathway. The scaled MHDV charg-
ing profiles in the western U.S. interconnection are further
downscaled to BAs by considering the relative penetration
of MHDVs across BAs. The penetration of MDVs in some
BAs is reported in [5]. For the remaining BAs we extrapolate
the penetration of MDVs using the penetration of LDVs as a
reference. Additionally, we assume that the relative penetration
of MDVs and HDVs is the same across BAs.

C. Developing Non-Road Vehicles Charging Load Profiles
As Fig.2 shows, we generate constant charging profiles for

non-road vehicles (aviation, rails, and ships). To downscale the
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Fig. 3. Sensitivity of LDV average daily charging load profiles (00:00 to 24:00
hours in PDT) to (a) charging strategies, (b) temperature, and (c) weekends
and weekdays. In (a), C1 and C2 are immediate (min delay) and load levelling
(load level) charging strategies. The results in (a)-(c) are simulated for King
County, Washington in 2035 using the NZ decarbonization pathway.

state-wise yearly energy use by non-road vehicles in GCAM-
USA to hourly charging power across BAs in the western U.S.
interconnection, we use the ratio of i) airport enplanements for
aviation, ii) route miles travelled in railroads and transits for
rails and trains, and iii) shipping docks for ships, in a given
BA to that of the entire western U.S. interconnection. The
energy at the western U.S. interconnection level is determined
by aggregating the state-level energies in GCAM-USA for the
11 states within the region. In this study, we assume that
electrified rails, ship, and aviation consume constant power
over each hour of the year. We make this assumption due
to the lack of data on their charging behavior as they are
not yet widely deployed. Therefore, this study may not reflect
accurate temporal downscaling of non-road vehicles. However,
their spatial downscaling is based on county-level data.

IV. CASE STUDY AND RESULTS

This section examines transportation load profiles in the
western U.S. interconnection for 2035 and 2050, considering
different decarbonization pathways and climate scenarios. It
compares the sensitivity of these profiles and projected loads
to the total system load. We present profiles for NZ decar-
bonization, highlighting its aggressiveness compared to BAU
pathway. Our open-source code allows for profile generation in
5-year increments until 2050 for both BAU and NZ pathways.

A. Sensitivity of LDV Load Profiles
Fig. 3 demonstrates the impact of LDV charging strategies,

temperature, and weekdays vs. weekends on the LDV charging
profiles. In Fig. 3(a), load-leveling charging (C2) shows a flat,
grid-friendly charging profile compared to immediate charging
(C1). With a 70% adoption rate of C2 by 2050, the peak load
can be reduced by 40% compared to the C1-only charging.
Fig. 3(b) shows the impact of temperature on LDV charging.
A temperature of 20◦C requires the least charging, while
−10, 0, and 40◦C days consume 28%, 21%, and 36% more
power, respectively. Temperature affects charging efficiency
and energy consumption for the same travel distance. Fig.
3(c) shows LDV charging peak load during weekends is
approximately 10% lower than on weekdays.

B. Sensitivity of MHDV Load Profiles
Fig. 4 shows the sensitivity of average daily MHDV charg-

ing load profiles to charging strategies, charger capacities, and
number of sample fleets for stochastic simulation. As Figs. 4(a)
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Fig. 4. Sensitivity of MHDV average daily charging profiles (00:00 to 24:00
hours in PDT), (a)-(c): MDV and (d)-(f): HDV, with (a) and (d): charging
strategies, (b) and (e): charger capacities, and (c) and (f): number of sample
fleets for stochastic simulation. In (a) and (d), Imm: Immediate charging, Del:
Delayed charging, Min: Minimum power charging, Ours: 40% Imm + 10%
Del + 50% Min strategies. In (b) and (e), Ours: 5% 50 kW + 5% 125 kW +
10% 250 kW + 40% 350 kW + 40% 500 kW chargers. The profiles in (a)-(f)
are simulated for the CISO BA in 2035 using the BAU pathway.

and 4(d) show, the choice of charging strategy significantly
impacts charging power’s magnitude and timing, resulting in
varying charging peaks. For instance, as Fig. 4(d) shows, the
HDV peak is 0.67 GW for minimum power charging at 00:00
while it is 2.84 GW for delay charging at 9:00; representing a
323% increase. To achieve a more balanced and grid-friendly
charging profile, we mix 40% immediate, 10% delay, and 50%
constant minimum power charging strategies as an example.
This mix means majority of MHDVs charge with constant
power throughout their dwelling time or start charging upon
arrival at depots and a small portion wait for a suitable time
to charge, such as during periods of cheaper electricity prices,
before their departure. Charger capacities also influence the
charging profiles, with slower charging leading to smaller
peaks. For example, as Fig.4(e) shows, the 50 kW charger
exhibits a peak of 0.76 GW at 20:00, while fast chargers have
a peak of 1.08 GW at 19:00, representing a 42% increase. We
anticipate that larger battery capacities will drive the adoption
of high power chargers. Thus, we consider a mix of chargers:
5% 50 kW, 5% 125 kW, 10% 250 kW, 40% 350 kW, and
40% 500 kW. Furthermore, as Figs. 4(c) and 4(f) show, the
charging profiles remain stable across different fleet samples,
despite variations in the number of sample fleets.

C. Transportation Load Profiles
Figs. 5(a) and (b) depict the charging load profiles (00:00

to 23:00 UTC hours discontinuous for each month) for LDVs,
MHDVs, rails, aviation, ship, and total transportation in the
western U.S. interconnection in 2035 and 2050 under the NZ
decarbonization pathway. Several key dynamics are observed.
Firstly, the charging load profiles differ by vehicle type.
Secondly, the transportation peak load significantly increases
from 27.77 GW in 2035 to 59.85 GW in 2050, marking
a 115% surge. Additionally, the variation in charging load
experiences a 6% increase, with values of 19.19 GW in 2035
and 20.35 GW in 2050. Thirdly, LDVs contribute prominently
to the total transportation charging load profile. Fourthly,
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Fig. 5. Average daily transportation charging load profiles (00:00 to 23:00
UTC hours) in the western U.S. interconnection across months in (a) 2035 and
(b) 2050 for the NZ decarbonization pathway and RCP 4.5 climate scenario.

charging load for non-road transportation modes (aviation,
rail, and ship) exhibits an upward trend from 2035 to 2050.
Finally, the MHDV charging load slightly decreases in 2050
compared to 2035 (e.g., HDV peak in 2035 is 4.9 GW but
4.1 GW in 2050) due to the NZ decarbonization pathway’s
emphasis on transitioning from MHDVs, particularly MDVs,
to mass transportation options such as rail and ships. This
decline is further driven by the adoption of alternative clean
fuel technologies, such as hydrogen, in later years.

D. Transportation Electric Load Relative to System Load
Three metrics (M1, M2, and M3) in Fig. 6 assess the spatial

and temporal impact of transportation load on the electric
power system. M1 represents the yearly ratio of total electric
energy to transportation electric energy, M2 measures the ratio
of transportation load to system load at the system peak, and
M3 measures the ratio of transportation load to system load at
the transportation peak. M1 rapidly increases in 2050 relative
to 2035, indicating steep increase in electrification across all
BAs. The results also reveal that all metrics vary significantly
across BAs. For instance, southern California BAs such as
LDWPD and IID have high M1 (e.g., in IID the M1 is 0.50 in
2035 and 0.68 in 2050). This is attributed to the aggressive EV
adoption trend in the region and the predominantly residential
system load with a moderate climate. Similarly, CHPD in
Chelan County, Washington, has high M1 due to its low non-
transportation electric load and ambitious EV policy. Notably,
the transportation peak and system peak do not coincide,
reducing system stress from transportation charging.

E. Load Profiles with BAU Decarbonization
In comparison to the BAU pathway (not shown in this pa-

per), the NZ pathway (Figs. 5 and 6) demonstrates significant
differences in charging peak load and variation. In 2035, NZ
has a 4.7% higher charging peak load than BAU (27.77 GW vs.
26.51 GW), increasing to approximately 65.4% in 2050 (59.85
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Fig. 6. Comparison of electric transportation (trans.) to system load for the
western U.S. interconnection (WI) BAs in (a) 2035 (b) 2050 for the NZ
decarbonization pathway and RCP 4.5 climate scenario.

GW vs. 36.17 GW). NZ also exhibits higher load variation,
with about 21.5% more variation in 2035 (19.19 GW vs. 15.79
GW) and 10.5% more variation in 2050 (20.35 GW vs. 18.41
GW) compared to BAU. Additionally, the transportation-to-
system energy ratio is notably higher in the NZ pathway,
particularly in 2050. For example, in IID, NZ shows a 9.8%
higher ratio than BAU in 2050 (0.67 in Fig. 6(b) vs. 0.61).

V. CONCLUSION

This paper presents a novel approach for generating
spatially-distributed hourly time-series of transportation charg-
ing load profiles. Applied to the western U.S. interconnection
in 2035 and 2050, our analysis reveals that transportation
charging loads can contribute significantly to the system
electric peak, ranging from 2.4% to 56.6% in different BAs,
despite accounting for less than 20% and 17% of total electric
load for the 2050 NZ case and the 2050 BAU case, respec-
tively. This variation is influenced by factors such as load
nature, climate zones, and EV adoption trends. Understand-
ing this non-uniform spatial and temporal impact is crucial
for effective decarbonization and transportation electrification
policies. To facilitate further research and policy analysis,
we provide a publicly available dataset and code at https:
//doi.org/10.5281/zenodo.7888569. Researchers and decision-
makers can use this resource to develop charging load profiles
for other regions, enabling informed decision-making in the
pursuit of sustainable transportation electrification.
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